首页> 外文OA文献 >Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: Treating flow cytometry data as high-dimensional objects How to cite this article: Finn WG, Carter KM, Raich R, Stoolman LM, Hero AO. Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: Treating flow cytometry data as high-dimensional objects. Cytometry Part B 2009; 76B: 1–7.
【2h】

Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: Treating flow cytometry data as high-dimensional objects How to cite this article: Finn WG, Carter KM, Raich R, Stoolman LM, Hero AO. Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: Treating flow cytometry data as high-dimensional objects. Cytometry Part B 2009; 76B: 1–7.

机译:通过聚类统计流形分析临床流式细胞免疫表型数据:将流式细胞术数据作为高维物体处理如何引用本文:Finn WG,Carter Km,Raich R,stoolman Lm,Hero aO。通过聚类在统计流形上分析临床流式细胞免疫表型分析数据:将流式细胞术数据作为高维物体处理。细胞计数B部分2009; 76B:1-7。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background Clinical flow cytometry typically involves the sequential interpretation of two-dimensional histograms, usually culled from six or more cellular characteristics, following initial selection (gating) of cell populations based on a different subset of these characteristics. We examined the feasibility of instead treating gated n -parameter clinical flow cytometry data as objects embedded in n -dimensional space using principles of information geometry via a recently described method known as Fisher Information Non-parametric Embedding (FINE). Methods After initial selection of relevant cell populations through an iterative gating strategy, we converted four color (six-parameter) clinical flow cytometry datasets into six-dimensional probability density functions, and calculated differences among these distributions using the Kullback-Leibler divergence (a measurement of relative distributional entropy shown to be an appropriate approximation of Fisher information distance in certain types of statistical manifolds). Neighborhood maps based on Kullback-Leibler divergences were projected onto two dimensional displays for comparison. Results These methods resulted in the effective unsupervised clustering of cases of acute lymphoblastic leukemia from cases of expansion of physiologic B-cell precursors (hematogones) within a set of 54 patient samples. Conclusions The treatment of flow cytometry datasets as objects embedded in high-dimensional space (as opposed to sequential two-dimensional analyses) harbors the potential for use as a decision-support tool in clinical practice or as a means for context-based archiving and searching of clinical flow cytometry data based on high-dimensional distribution patterns contained within stored list mode data. Additional studies will be needed to further test the effectiveness of this approach in clinical practice. © 2008 Clinical Cytometry Society
机译:背景技术临床流式细胞术通常涉及对二维直方图的顺序解释,通常是根据六个或多个细胞特征,根据这些特征的不同子集对细胞群进行初始选择(门控)后,再进行解释。我们研究了通过信息几何原理,通过最近描述的称为Fisher信息非参数嵌入(FINE)的方法,将门控n参数临床流式细胞术数据替代为嵌入n维空间中的对象的可行性。方法通过迭代选通策略初步选择相关细胞群后,我们将四个颜色(六参数)临床流式细胞仪数据集转换为六维概率密度函数,并使用Kullback-Leibler散度(测量法)计算这些分布之间的差异在某些类型的统计流形中,相对分布熵的表示是费舍尔信息距离的适当近似值。将基于Kullback-Leibler散度的邻域图投影到二维显示器上进行比较。结果这些方法导致了一组54例患者样本中的生理性B细胞前体(hematogones)扩展病例中的急性淋巴细胞白血病病例的有效无监督聚类。结论将流式细胞术数据集作为高维空间中嵌入的对象进行处理(与顺序二维分析相对)具有潜力,可在临床实践中用作决策支持工具或用作基于上下文的存档和搜索的手段基于存储的列表模式数据中包含的高维分布模式的临床流式细胞术数据分析。需要进一步的研究来进一步测试这种方法在临床实践中的有效性。 ©2008临床细胞计数协会

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号